# Reconfigurable Intelligent Surface for Green Edge Inference in Machine Learning

## Sheng Hua, Yuanming Shi

ShanghaiTech University



#### **Outline**

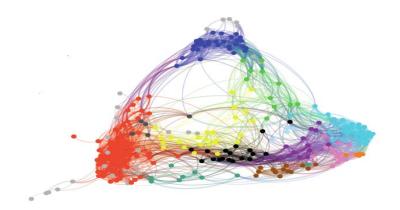
#### Motivations

Storage, latency, power

#### Two vignettes:

- > Energy-efficient edge cooperative inference
  - Why inference at network edge?
  - Edge inference via wireless cooperative transmission
- > Reconfigurable intelligent surface empowered edge inference
  - Why reconfigurable intelligent surface?
  - Joint phase shifts and beamforming vectors design

# Vignettes A: Energy-efficient edge cooperative inference

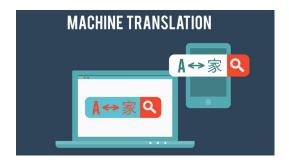


## Why edge inference?

# Al is changing our lives



self-driving car



machine translation



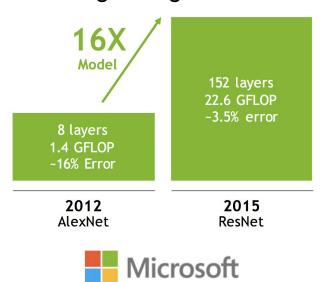
smart robots



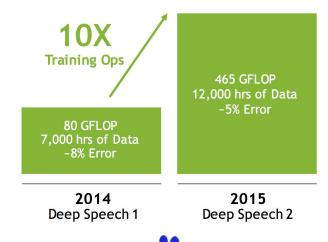
AlphaGo

# Models are getting larger

#### image recognition



#### speech recognition





# The first challenge: model size

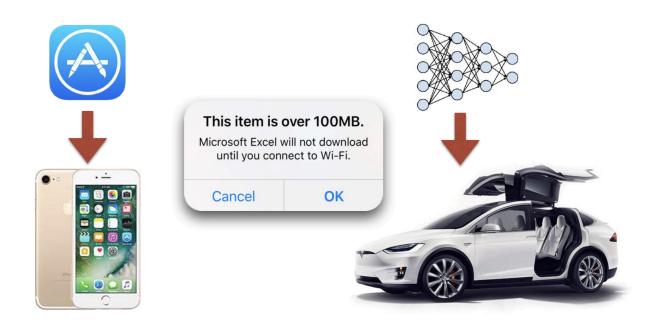
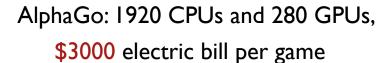


Fig. credit: Han

# The second challenge: energy











on mobile: drains battery



# The third challenge: speed

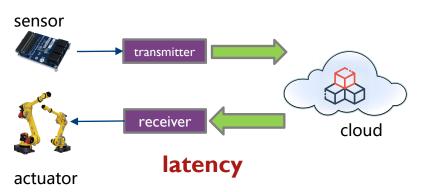
| Error rate | Training time |
|------------|---------------|
|            |               |

ResNet18: 10.76% 2.5 days
ResNet50: 7.02% 5 days
ResNet101: 6.21% 1 week
ResNet152: 6.16% 1.5 weeks

long training time limits ML researcher's productivity



#### communication



processing at "Edge" instead of the "Cloud"

#### How to make deep learning more energy-efficient?

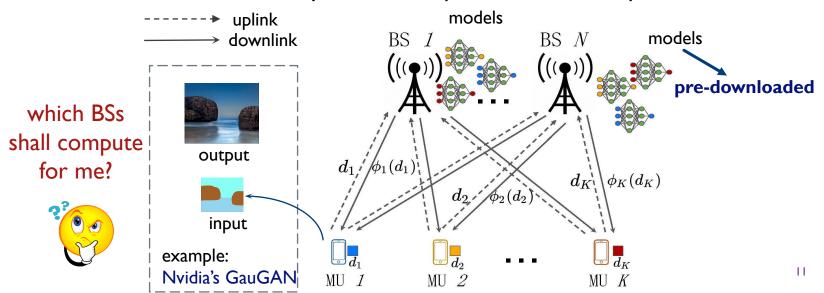


low power

## Edge inference for deep neural networks

 Goal: energy-efficient edge processing framework to perform deep learning inference tasks at the edge computing nodes

any task can be performed at multiple BSs



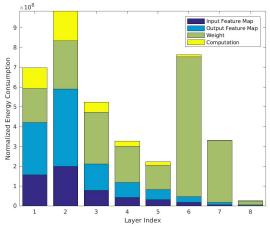
## **Computation power consumption**

- Goal: estimate the power consumption for deep model inference
- Example: power consumption estimation for AlexNet [Sze' CVPR 17]

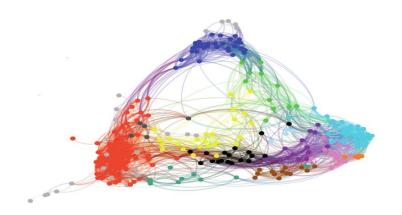
- Cooperative inference tasks at multiple BSs:
  - Computation replication: high computation power
  - Cooperative transmission: low transmission power

#### Solution:

> minimize the sum of computation and transmission power consumption



# Vignettes B: Reconfigurable intelligent surface empowered edge inference



#### **Smart radio environments**

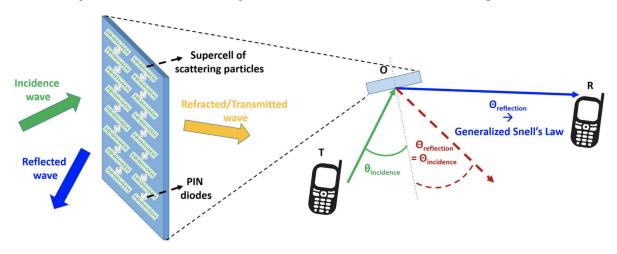
- Current wireless networks: no control of radio waves
  - Perceive the environment as an "unintentional adversary" to communication
  - > Optimize only the end-points of the communication network
  - No control of the environment, which is viewed as a passive spectator

Smart radio environments: reconfigure the wireless propagations



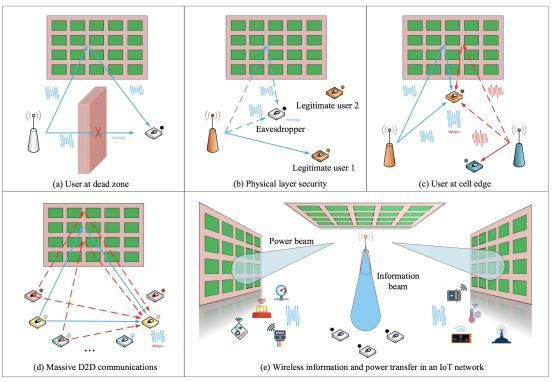
# Reconfigurable intelligent surface

Working principle of reconfigurable intelligent surface (RIS):
 different elements of an RIS can reflect the incident signal by controlling
 its amplitude and/or phase for directional signal enhancement or nulling



- I. no any active transmit module
- operate in fullduplex mode

#### Reconfigurable intelligent surface meet wireless networks



reconfigurable intelligent surface meets wireless network:

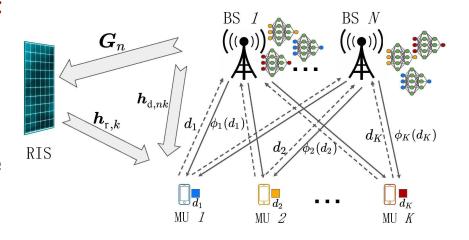
- edge inference
- over-the-air computation
- massive MIMO
- wireless power transfer
- D2D communications
- NOMA
- mmWave
- ...

## **RIS** empowered edge inference

#### Reconfigurable Intelligent surface:

- overcoming unfavorable signal propagation conditions
- improving energy efficiency
- tuning phase shifts with M passive elements

$$oldsymbol{\Theta} = \operatorname{diag}(eta heta_1, \cdots, eta heta_M)$$
 with  $eta_m = e^{j arphi_m}, arphi_m \in [0, 2\pi)$  w.l.o.g. assuming  $eta = 1$ 



RIS aided edge inference system: build controllable wireless environments to decrease transmit signal power

# Signal model

- Proposal: MU k's task performed at multiple BSs  $\mathcal{A}_n \subseteq \mathcal{K}$ 
  - ightharpoonup transmitted signal at BS n:  $oldsymbol{x}_n = \sum_{k \in \mathcal{A}_n} oldsymbol{v}_{nk} s_k$
  - $\blacktriangleright$  beamforming vector for  $\phi_k(d_k)$  at BS  $n\colon oldsymbol{v}_{nk}$
  - $ilde{}$  signal received by MU  $k \in \mathcal{K}: \ y_k = \sum_{n \in \mathcal{N}} m{g}_{nk}^{ ext{H}} m{x}_n + z_k$
  - ightharpoonup equivalent channel response from BS n to MU k :

$$oldsymbol{g}_{nk} = oldsymbol{h}_{\mathrm{d},nk} + oldsymbol{G}_{n}^{\mathrm{H}}oldsymbol{\Theta}^{\mathrm{H}}oldsymbol{h}_{\mathrm{r},k} \ ext{reflected link}$$

 $\triangleright$  the SINR for MU  $k \in \mathcal{K}$ :

$$SINR_{k}(\mathcal{A}) = \frac{\left|\sum_{n \in \mathcal{N}} \mathbf{1}_{\{k \in \mathcal{A}_{n}\}} \boldsymbol{g}_{nk}^{H} \boldsymbol{v}_{nk}\right|^{2}}{\sum_{l \neq k} \left|\sum_{n \in \mathcal{N}} \mathbf{1}_{\{l \in \mathcal{A}_{n}\}} \boldsymbol{g}_{nk}^{H} \boldsymbol{v}_{nl}\right|^{2} + \sigma_{k}^{2}}$$

## **Energy-efficient edge inference**

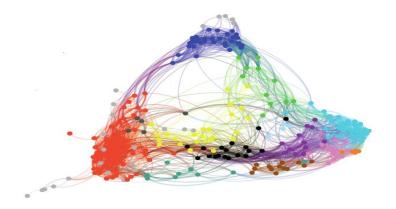
Goal: minimize total power consumption under QoS constraints

$$\begin{split} \mathscr{P}_{\text{original}} : & \underset{\mathcal{A}, \{\boldsymbol{v}_{nk}\}, \boldsymbol{\Theta}}{\text{minimize}} & \sum_{n \in \mathcal{N}} \frac{1}{\eta_n} \sum_{k \in \mathcal{A}_n} \|\boldsymbol{v}_{nk}\|_2^2 + \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{A}_n} P_{nk}^c & \text{sum of communication and computation power consumption} \\ & \text{subject to} & & \text{SINR}_k\left(\mathcal{A}\right) \geq \gamma_k, \ \ \forall \, k \in \mathcal{K}, \\ & \sum_{k \in \mathcal{A}_n} \|\boldsymbol{v}_{nk}\|_2^2 \leq P_{n,\max} \ \ \forall \, n \in \mathcal{N}, \\ & |\boldsymbol{\theta}_m| = 1, \ \ \forall \, m \in \mathcal{M}, \end{split} \qquad \text{phase shifts design}$$

#### Challenges:

- ightarrow I. mixed combinatorial optimization problem because of combinatorial variable  $\mathcal{A}=(\mathcal{A}_1,\ldots,\mathcal{A}_N)$
- > 2. coupled optimization variables in SINR constraints
- > 3. nonconvex unit-modulus constraints induced by the RIS

# **Group Sparsity Inducing and An Alternating Framework**



#### Group sparse beamforming for power minimization

- Proposal: group sparse beamforming approach to get rid of the combinatorial variable  $\mathcal{A}$
- Key observation:  $k \notin A_n \Leftrightarrow v_{nk} = 0$

$$\sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{A}_n} P_{nk}^{c} \Rightarrow \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} \mathbf{1}_{\{\boldsymbol{v}_{nk} = \boldsymbol{0}\}} P_{nk}^{c}$$

$$\operatorname{SINR}_{k}(\mathcal{A}) = \frac{\left|\sum_{n \in \mathcal{N}} \mathbf{1}_{\{k \in \mathcal{A}_{n}\}} \boldsymbol{g}_{nk}^{H} \boldsymbol{v}_{nk}\right|^{2}}{\sum_{l \neq k} \left|\sum_{n \in \mathcal{N}} \mathbf{1}_{\{l \in \mathcal{A}_{n}\}} \boldsymbol{g}_{nk}^{H} \boldsymbol{v}_{nl}\right|^{2} + \sigma_{k}^{2}}$$

$$\Rightarrow \text{SINR}_{k} = \frac{\left|\sum_{n \in \mathcal{N}} \boldsymbol{g}_{nk}^{\text{H}} \boldsymbol{v}_{nk}\right|^{2}}{\sum_{l \neq k} \left|\sum_{n \in \mathcal{N}} \boldsymbol{g}_{nk}^{\text{H}} \boldsymbol{v}_{nl}\right|^{2} + \sigma_{k}^{2}}, \text{where } \boldsymbol{v}_{nk} = \boldsymbol{0} \text{ if } k \notin \mathcal{A}_{n}$$

#### Group sparse beamforming for power minimization

• Proposal: exploit group sparsity structure beamforming to get rid of the combinatorial variable  $\mathcal{A}$ 

$$\begin{split} \mathscr{P}_{\text{original}} : & \underset{\mathcal{A}, \{\boldsymbol{v}_{nk}\}, \boldsymbol{\Theta}}{\text{minimize}} & \sum_{n \in \mathcal{N}} \frac{1}{\eta_n} \sum_{k \in \mathcal{A}_n} \|\boldsymbol{v}_{nk}\|_2^2 + \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{A}_n} P_{nk}^c \\ & \text{subject to} & \text{SINR}_k \left(\mathcal{A}\right) \geq \gamma_k, \ \forall \, k \in \mathcal{K}, \\ & \sum_{k \in \mathcal{A}_n} \|\boldsymbol{v}_{nk}\|_2^2 \leq P_{n, \max}, \ \forall \, n \in \mathcal{N}, \\ & |\boldsymbol{\theta}_m| = 1, \ \forall \, m \in \mathcal{M}, \end{split}$$

$$& \underset{\{\boldsymbol{v}_{nk}\}, \boldsymbol{\Theta}}{\text{minimize}} & \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} \frac{1}{\eta_n} \|\boldsymbol{v}_{nk}\|_2^2 + \sum_{n \in \mathcal{N}} \sum_{k \in \mathcal{K}} \mathbf{1}_{\{\boldsymbol{v}_{nk} = \boldsymbol{0}\}} P_{nk}^c \\ & \text{subject to} & \text{SINR}_k \geq \gamma_k, \ \forall \, k \in \mathcal{K}, \\ & \sum_{k \in \mathcal{K}} \|\boldsymbol{v}_{nk}\|_2^2 \leq P_n^{\max}, \ \forall \, n \in \mathcal{N}, \end{split}$$

 $|\theta_m|=1, \ \forall m\in\mathcal{M}.$ 

 $k \notin \mathcal{A}_n \Leftrightarrow \boldsymbol{v}_{nk}^{\mathrm{DL}} = \boldsymbol{0}$ 

# An alternating framework

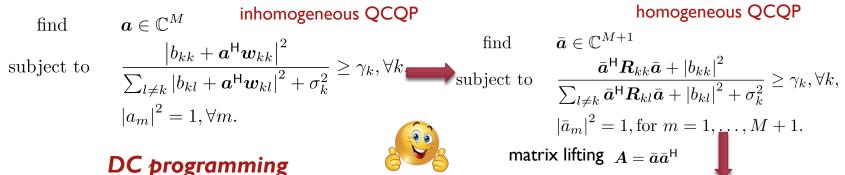
lacksquare Stage I: updating beamforming vector  $\{oldsymbol{v}_{nk}\}$  with fixed RIS phase shifts  $oldsymbol{\Theta}$ 

mixed  $\ell_{1,2}$ -norm for group sparsity inducing

# An alternating framework

**Stage II:** updating phase-shift matrix  $\Theta$  with fixed beamforming vectors

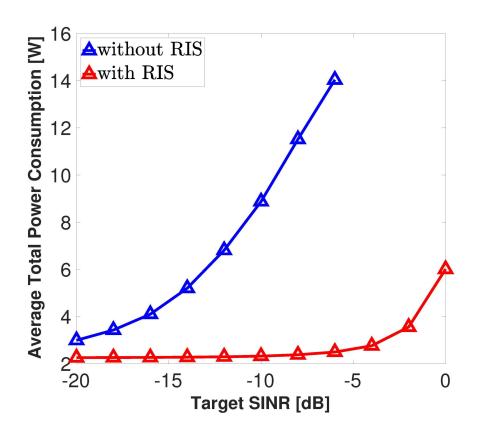
$$\textbf{define} \quad \boldsymbol{a} = \left[\theta_1, \dots, \theta_M\right]^{\mathsf{H}}, \ \boldsymbol{w}_{kl} = \operatorname{diag}(\boldsymbol{h}_{r,k}^{\mathsf{H}}) \tilde{\boldsymbol{G}} \boldsymbol{v}_l, \ b_{kl} = \boldsymbol{h}_k^{\mathsf{H}} \boldsymbol{v}_l, \ \boldsymbol{R}_{kl} = \left[\begin{array}{cc} \boldsymbol{w}_{kl} \boldsymbol{w}_{kl}^{\mathsf{H}} & \boldsymbol{w}_{kl} b_{kl}^{\mathsf{H}} \\ \boldsymbol{w}_{kl}^{\mathsf{H}} b_{kl} & 0 \end{array}\right], \quad \bar{\boldsymbol{a}} = \left[\begin{array}{cc} \boldsymbol{a} \\ t \end{array}\right],$$



#### DC programming

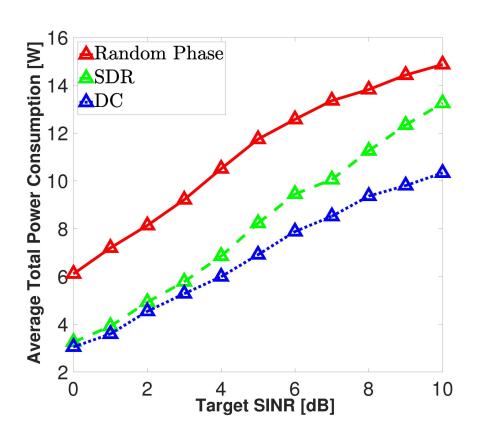
minimize 
$$\text{Tr}(\boldsymbol{A}) - \|\boldsymbol{A}\|_2$$
 find  $\boldsymbol{A} \in \mathbb{C}^{(M+1)\times(M+1)}$  subject to  $\frac{\text{Tr}(\boldsymbol{R}_{kk}\boldsymbol{A}) + |b_{kk}|^2}{\sum_{l \neq k} \text{Tr}(\boldsymbol{R}_{kl}\boldsymbol{A}) + |b_{kl}|^2 + \sigma_k^2} \ge \gamma_k, \forall k,$  subject to  $\frac{\text{Tr}(\boldsymbol{R}_{kk}\boldsymbol{A}) + |b_{kl}|^2 + \sigma_k^2}{\sum_{l \neq k} \text{Tr}(\boldsymbol{R}_{kl}\boldsymbol{A}) + |b_{kl}|^2 + \sigma_k^2} \ge \gamma_k, \forall k,$   $\boldsymbol{A}_{mm} = 1, \text{ for } m = 1, \dots, M+1,$   $\boldsymbol{A}_{mm} = 1, \text{ for } m = 1, \dots, M+1,$   $\boldsymbol{A} \succeq \boldsymbol{0} \text{ and } \text{rank}(\boldsymbol{A}) = 1.$  24

#### **Simulation Results**



**Insights:** deploying an RIS in edge inference system can significantly reduce the total power consumption

#### **Simulation Results**



Insights: the proposed DC significantly outperforms two benchmark algorithms in obtaining rank-one solutions

## **Concluding remarks**

- Edge inference over "intelligent" wireless networks
  - > Edge inference empowered by reconfigurable intelligent surface
- **A** mixed  $\ell_{1,2}$ -norm and DC based alternating framework
  - ightharpoonup Mixed  $\ell_{1,2}$ -norm for group sparsity inducing
  - DC representation for low-rank functions
  - MM algorithm for DC programming

#### To learn more...

Web: <a href="http://shiyuanming.github.io/publicationstopic.html">http://shiyuanming.github.io/publicationstopic.html</a>

#### Papers:

- > **S. Hua** and Y. Shi, "Reconfigurable intelligent surface for green edge inference in machine learning," in *Proc. IEEE Global Commun. Conf. (Globecom)* Workshops, Waikoloa, Hawaii, USA, Dec. 2019.
- > **S. Hua**, Y. Zhou, K. Yang, and Y. Shi, "Reconfigurable intelligent surface for green edge inference," *submitted to IEEE Trans*. Wireless Commun. 2019, <a href="https://arxiv.org/abs/1912.00820">https://arxiv.org/abs/1912.00820</a>.



huasheng@shanghaitech.edu.cn